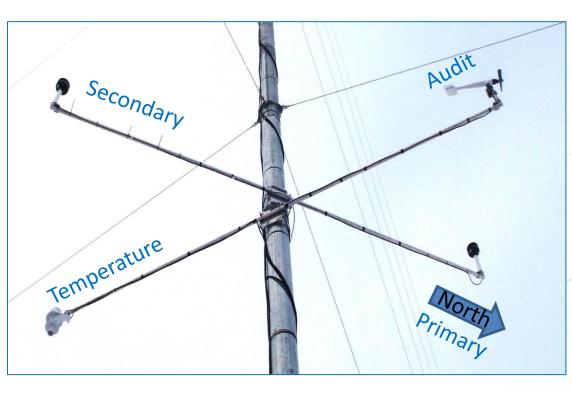
Successful Implementation of an Alternative Co-located Transfer Standard Audit Approach:

Continuous Deployment of CTS Wind Sensors on a Tall Tower

Kirk Stopenhagen Vorticity Consulting LLC Redmond, WA

Richard Berg Barr Engineering Company Minneapolis, MN

Presented at the National Ambient Air Monitoring Conference
Atlanta, GA
August 13, 2014


Acknowledgements

- Sarah Olson, Barr Engineering
- Bridget Hall, Campbell Scientific
- Bilal Qazzaz, EPA region 5 Meteorologist
- Dennis Mikel, EPA Office of Air Quality Planning and Standards
- Teck American, for permission to use their met data
- Mistaya Engineering, Inc., for developing windographer software; <u>www.windographer.com</u>

Measurement Parameters

Measured Parameter	Elevation	Instrument
data loggers (3)	Tower mounted enclosure	Campbell Scientific Inc. (CSI) CR3000, 2-each CR 1000
Air temperature, Relative humidity (dew point)	2-meters (RH) 2,10,20, 50- meters (temp)	CSI CS-215
Barometric pressure	Tower mounted enclosure	CSI CS106, Vaisala PTB110
Motor aspirated temperature and ΔT	2, 10, 20, 50-meters	RM Young 43347 RTD
Precipitation	Ground (off tower location)	CSI CS 700H
Solar radiation	2-meters (separate mast)	Kipp and Zonen CNR4
Sonic ranging snow depth (hydrology only)	2-meters	SR50A
Wind speed and direction	10, 20, 50-meters	Gill WindSonic4-two at each level
Wind speed and direction (hydrology only)	2-meters	Gill WindSonic4
Wind speed and direction (CTS)	10, 20, 50-meters	RM Young Model 05305 AQ

Tower Configuration

10 meter close-up

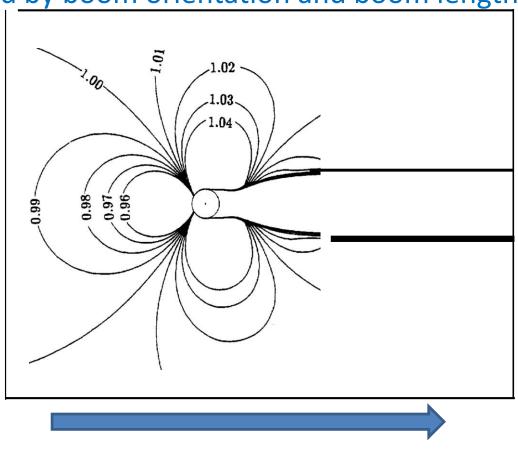
CTS Audit Period Selection Approach

- Avoid excessive bias
- Assure that there was a high degree of valid data to audit
- Audit data period selected for every sampling quarter
- Track sensor wear

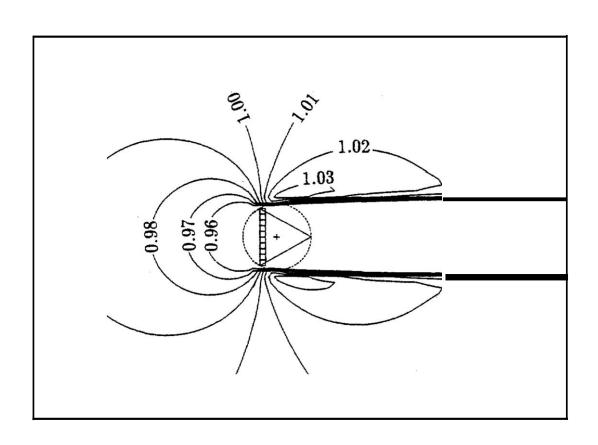
Audit period selection:

- Select Data from first month of operations
- Choose a week that had close to 100% valid data
- Periods where hourly wind directions were from at least three of four quadrants.
- Finally, select period where all three measurement heights;
 10, 20 and 50 meter met the audit qualification simultaneously.

EPA Proposed audit criteria for sonic wind sensors systems*


Wind Variable	Average Difference	Standard Deviation of the Differences	Qualifications
Speed	±0.25 m/s <5 m/s or ±5% or <u><2.5 m/s</u> above 5 m/s	0.2 m/s	Wind speeds greater than 1 m/s
Direction	±5°	2°	Wind speeds greater than 1 m/s

^{*} Quality Assurance Handbook for Air Pollution Measurement Systems, Table 2-2 Volume IV: Meteorological Measurements Version 2.0 (Final); *EPA-454/B-08-002*, March 2008

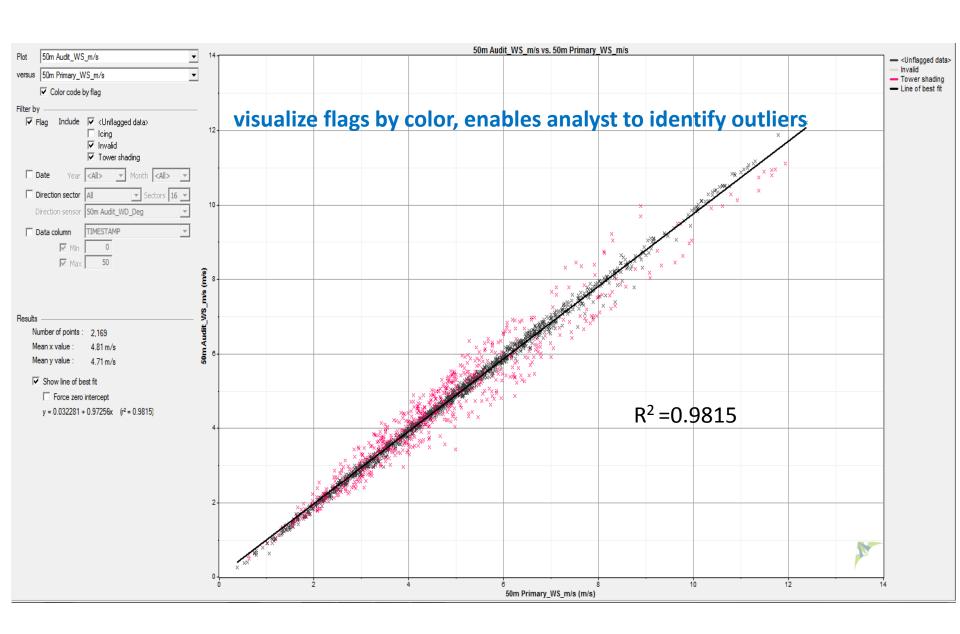

Tower Wake Effects

- caused by the tower and instrument mounting booms
- can result in downwind turbulence causing underspeeding of wind speed, and wind direction variability

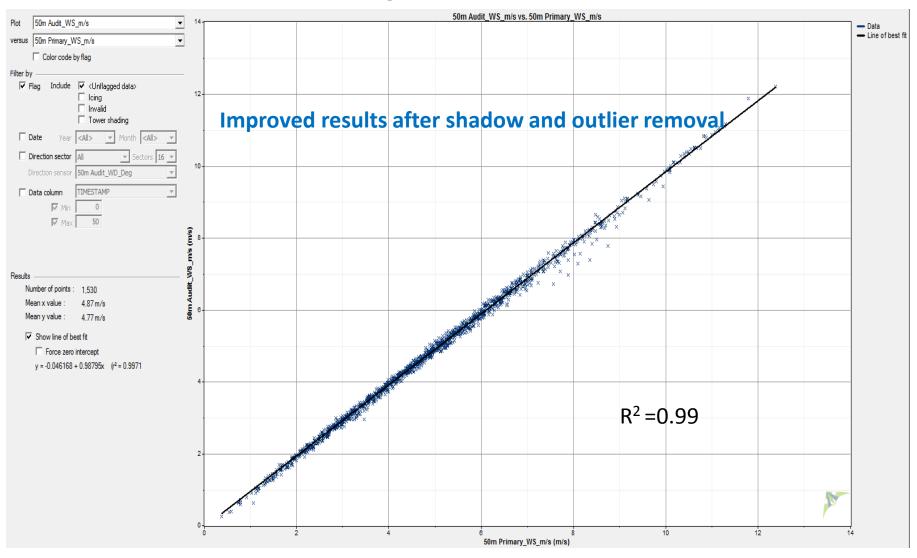
Is mitigated by boom orientation and boom length

Wakes From Triangular Towers

Temperature sensors & aspirators



How to remove tower effects?



Windographer.com

Scatter plots

Scatter plots-continued

EPA Proposed audit criteria for sonic wind sensors systems*

Wind Variable	Average Difference	Standard Deviation of the Differences	Qualifications
Speed	±0.25 m/s<5 m/s or ±5% or <2.5 m/s above 5 m/s	0.2 m/s	Wind speeds greater than 1 m/s
Direction	±5°	2°	Wind speeds greater than 1 m/s

^{*} Quality Assurance Handbook for Air Pollution Measurement Systems, Table 2-2 Volume IV: Meteorological Measurements Version 2.0 (Final); *EPA-454/B-08-002*, March 2008

Audit Results

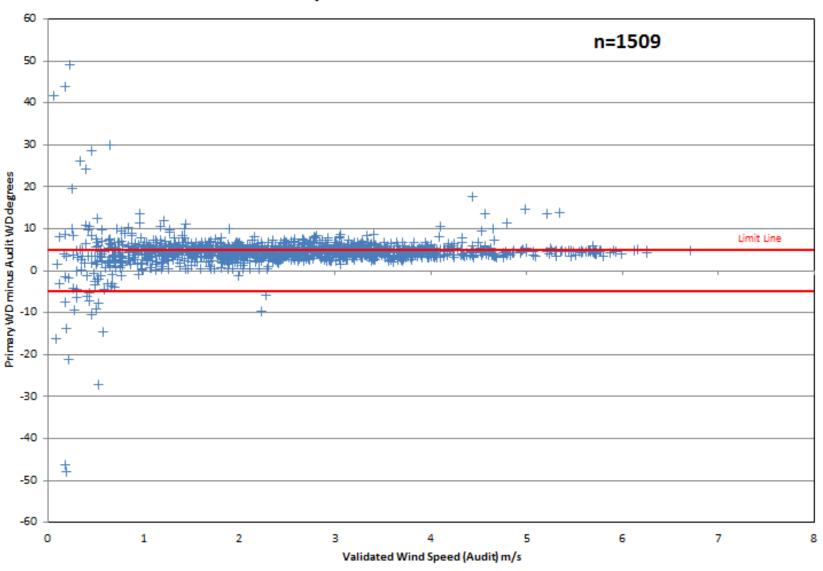
			nd Quar		uait	<u>Kesuits</u>					
		Audit Da							Audit Resi	ults	
Height			5	0 meters							
Sensor	Audit Wind Speed	Audit Wind Direction	Primary Wind Speed	Primary Wind Direction	Secondary Wind Speed	Secondary Wind Direction		P vs A ws	P vs A wd	S vs A ws	S vs A wd
Date								Diff	Diff	Diff	Diff
6/17/2014 15:00	3.763	359.9	3.804	354.4	3.642	357		0.041	-5.5	-0.121	-2.9
6/17/2014 16:00	4.183	15.13	4.203	10.16	4.07	12.91		0.02	-4.97	-0.113	-2.22
6/17/2014 17:00	4.216	24.12	4.238	19.29	4.199	21.94		0.022	-4.83	-0.017	-2.18
6/17/2014 18:00	4.256	24.92	4.251	19.89	4.24	22.5		-0.005	-5.03	-0.016	-2.42
6/17/2014 19:00	3.797	39.32	3.795	34.55	3.818	36.7		-0.002	-4.77	0.021	-2.62
6/17/2014 20:00	4.554	45.54	4.586	40.87	4.591	42.71		0.032	-4.67	0.037	-2.83
6/17/2014 21:00	4.906	45.71	4.96	41.01	4.952	43.07		0.054	-4.7	0.046	-2.64
6/17/2014 22:00	5.088	50.11	5.201	44.62	5.208	46.65		0.113	-5.49	0.12	-3.46
6/17/2014 23:00	5.186	49.26	5.239	43.93	5.246	45.91		0.053	-5.33	0.06	-3.35
6/18/2014 0:00	4.775	84	4.856	77.55	4.879	79.34		0.081	-6.45	0.104	-4.66
6/18/2014 1:00	3.789	106.9	3.884	101.2	3.89	102.6		0.095	-5.7	0.101	-4.3
6/18/2014 2:00	4.268	113.2	4.344	108	4.366	109.8		0.076	-5.2	0.098	-3.4
6/18/2014 3:00	4.384	99.1	4.49	93.1	4.46	94.8		0.106	-6	0.076	-4.3
6/18/2014 4:00	4.462	83.4	4.58	76.46	4.575	78.12		0.118	-6.94	0.113	-5.28
6/18/2014 5:00	4.373	89.8	4.469	83.5	4.506	85.2		0.096	-6.3	0.133	-4.6
6/18/2014 6:00	5.788	110.9	5.822	105.7	5.812	107.4		0.034	-5.2	0.024	-3.5
6/18/2014 7:00	6.726	121.9	6.662	117	6.718	118.8		-0.064	-4.9	-0.008	-3.1
6/18/2014 8:00	6.544	121.5	6.49	116.5	6.593	118.4		-0.054	-5	0.049	-3.1
6/18/2014 9:00	6.363	106.4	6.406	100.8	6.412	102.5		0.043	-5.6	0.049	-3.9
6/18/2014 10:00	5.609	111.5	5.612	106.2	5.668	107.7		0.003	-5.3	0.059	-3.8
6/18/2014 11:00	5.611	106.1	5.653	100.4	5.656	102.2		0.042	-5.7	0.045	-3.9
6/18/2014 12:00	6.273	127.7	6.205	122.9	6.287	124.5		-0.068	-4.8	0.014	-3.2
6/18/2014 13:00		126.9	6.541	121.7	6.648	123.5		-0.076	-5.2	0.031	-3.4
6/18/2014 14:00			6.847	109.1	6.92			-0.01	-5.4		-3.3
- '								±0.25		±0.25 m/s	
								m/s or		or	
							Criteria	±5%/0.2	±5°/2°	±5%/0.2	±5°/2°
							Avg.	0.61	-5.37		-3.43
							Sdev	0.06	0.57	0.06	0.78

Audit Results - continued

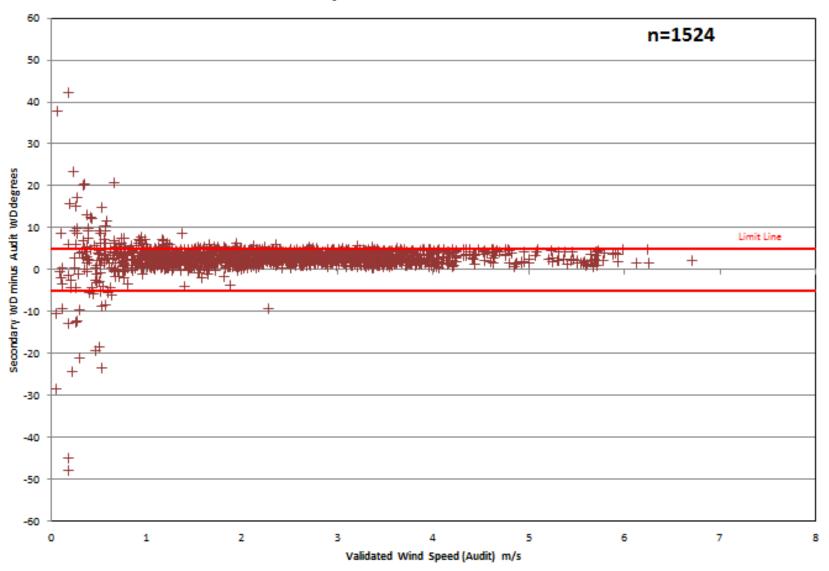
- 6 quarterly 'snapshot' 24-hr audits conducted to date
 - Winter audits had more outliers due to icing events and different prevailing wind directions causing more shadowing
 - No indication of bearing degradation since audit results remain consistent
 - Valuable to identify vane offset on 50m

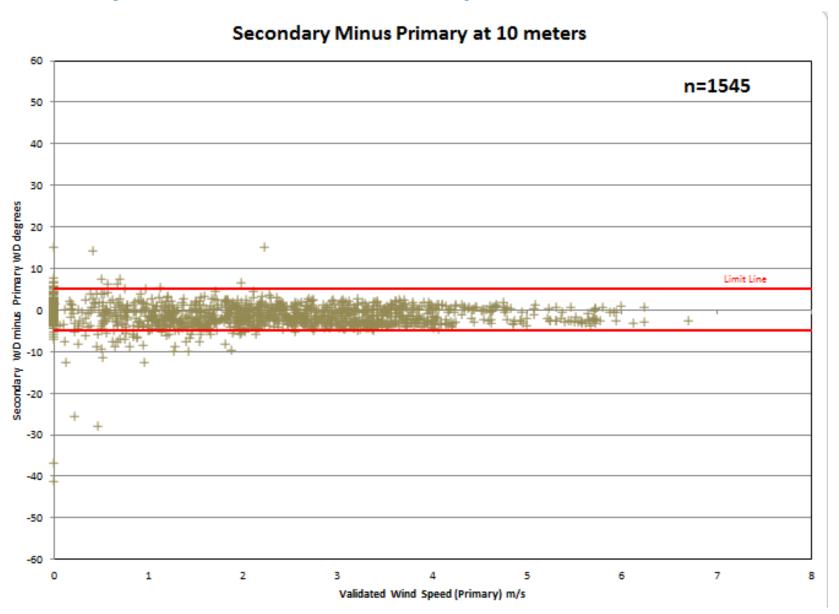
Audit Results – continued 50 meters

Sei	nsor				50	mete	er Prin	nary		50 meter Secondary						
Quarter		EP. Propo Aud Crite	osed dit	Qtr	Qtr		Qtr	Qtr	Qtr		2nd Qtr 2013	_	4th Qtr 2013	2014	2nd Qtr 2014	
Wind Speed Standard Deviation of the	Average Difference	/	Or 5% >5 m/s	0.14 m/s		3%	0.22 m/s	0.17 m/s	0.61%	0.27 m/s	0.13 m/s	3%	0.24 m/s	0.21 m/s	0.79%	
	Standard Deviation of the Differences	0.2 m/s		0.2	0.1	0.3	0.0	0.1	0.1	0.2	0.1	0.3	0.0	0.1	0.1	
Wind	Average Difference	±5°		-6	-6	-6	-5	-6	-5	-3	-3	-2	-3	3	-3	
Direction	Standard Deviation of the Differences	2'	0	1	1	1	1	1	1	2	1	0	2	1	1	

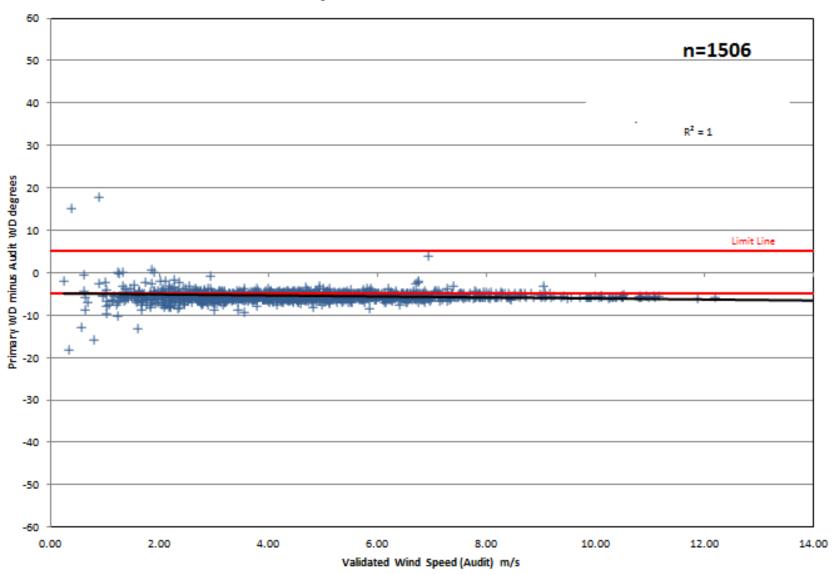

Audit Results – continued 20 meters

Sei	nsor		2	20 mete	er Prim	ary		20 meter Secondary					
Quarter		Qtr	()Tr	_	_	_	_	1st Qtr 2013		_	4th Qtr 2013	_	2nd Qtr 2014
Wind	Average Difference		0.12 m/s	0.20 m/s	0.25 m/s	0.15 m/s	0.14 m/s	0.25 m/s	0.15 m/s	0.19 m/s	0.20 m/s	0.18 m/s	0.12 m/s
Speed Standa Deviation of the	Standard Deviation of the Differences	0.2	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1
	Average Difference	-1	-1	0	0	-0.5	-1	-2	-2	0	-2	-2	-3
Wind Direction	Standard Deviation of the Differences	2	2	1	1	3	1	2	2	1	2	3	1

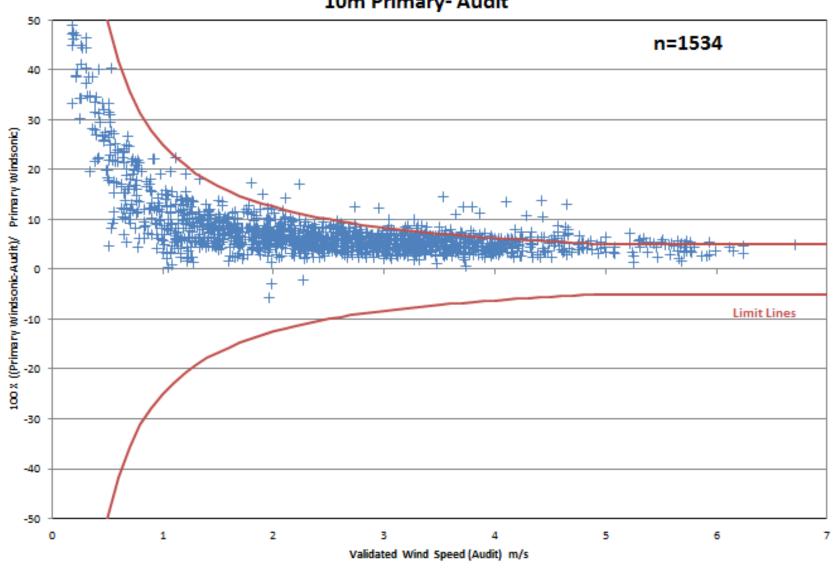

Audit Results – continued 10 meters

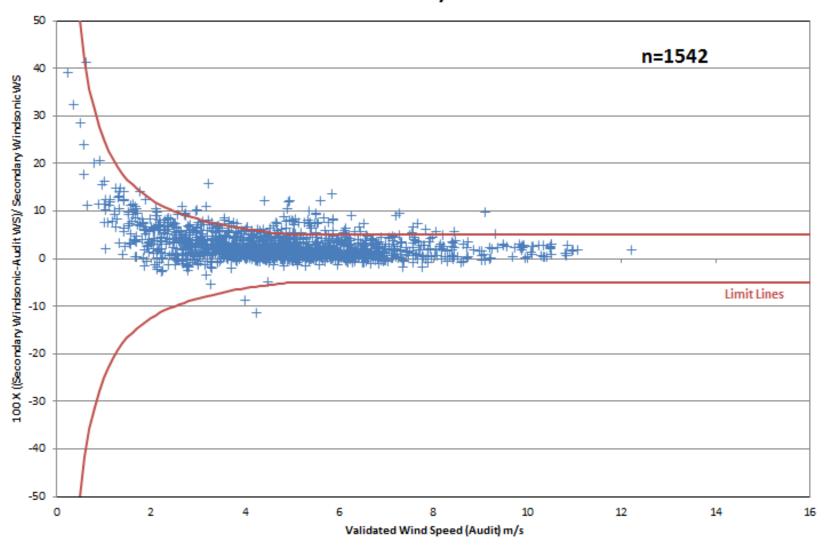

Se	nsor			10 met	er Prima	ary		10 meter Secondary					
Quarter		Qtr	II ITr	_	4th Qtr 2013	_	_	1st Qtr 2013	_	_	4th Qtr 2013	_	2nd Qtr 2014
Wind	Average Difference	0.17 m/s	0.11 m/s	0.20 m/s	0.20 m/s	0.16 m/s	0.16 m/s	0.09 m/s	0.14 m/s	0.15 m/s	0.23 m/s	0.15 m/s	0.12 m/s
Speed	Standard Deviation of the Differences	0	0	0.1	0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1
	Average Difference	5	5	5	5	3	5	3	3	4	4	4	2
Wind Direction	Standard Deviation of the Differences	2	1	1	2	2	1	1	2	1	1	2	1

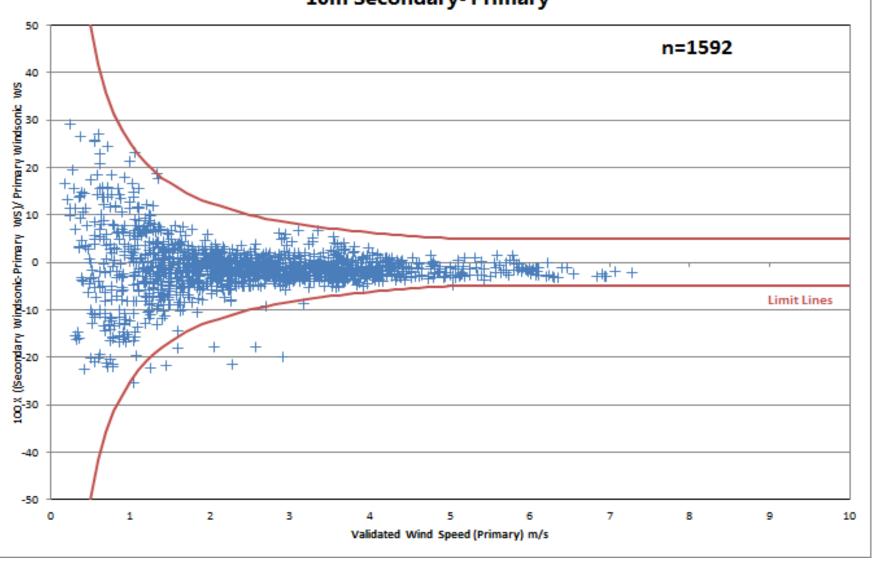
Primary Minus Audit at 10 meters



Secondary Minus Audit at 10 meters




Primary Minus Audit at 50 meters


Wind Speed Difference as a Percentage of Sonic Wind Speed 10m Primary- Audit

Wind Speed Difference as a Percentage of Sonic Wind Speed 50m Secondary- Audit

Wind Speed Difference as a Percentage of Sonic Wind Speed 10m Secondary- Primary

Data recovery for 2nd Quarter 2014

Data recovery after Shadow	& Outlier removal
Sensor	2nd Quarter 2014
50-meter primary wind speed & direction	81.9%
50-meter secondary wind speed & direction	82.0%
50-meter audit wind speed & direction	87.0%
20-meter primary wind speed & direction	83.8%
20-meter secondary wind speed & direction	85.2%
20-meter audit wind speed & direction	84.1%
10-meter primary wind speed & direction	85.4%
10-meter secondary wind speed & direction	85.8%
10-meter audit wind speed & direction	83.7%

Percent of data meeting audit criteria after shadow and outlier removal

		2nd Quarter									
		Percent of Qua	alified Data pas	ssing 24 hour Audit Criteria							
Sei	nsor	Wind	Speed	Wind Direction							
		Average Difference	Standard Deviation of the Differences	Average Difference	Standard Deviation of the Differences						
	Criteria	±0.25 m/s < 5m/s or ±5%	0.2 m/s	±5°	2°						
	Primary Minus Audit	95.4%	97.5%	36.0%	95.4%						
50 meters	Secondary Minus Audit	93.35%	97.67%	98.01%	95.08%						
	Secondary Minus Primary	99.89%	99.57%	99.89%	96.79%						
	Primary Minus Audit	89.8%	96.7%	97.6%	90.1%						
20 Meters	Secondary Minus Audit	89.9%	97.9%	97.2%	88.8%						
	Secondary Minus Primary	99.2%	96.3%	100.0%	95.0%						
	Primary Minus Audit	90.4%	97.7%	82.9%	85.7%						
10 Meters	Secondary Minus Audit	96.1%	97.3%	96.8%	92.3%						
	Secondary Minus Primary	100.00%	100.00%	100.00%	89.83%						

Ongoing Project Tasks & Additional Studies

- Further utilize Windographer for outlier determination and flagging data
- Build 'model-input' database following EPA substitution guidance; three valid wind measurements available at each height.
- Investigate additional time intervals--1-minute, 15-minute
- Automate outlier removal based on speed and/or direction criteria

What might be done differently to improve method?

- More vertical separation on tower between audit/temperature booms and sonics to reduce wake effects
- Be sure to account for prevailing winds-we were successful on this project

Conclusions

- Data show that hourly data successfully meets the proposed audit criteria.
- Biases can be clearly identified, and data can be corrected for model input or compliance uses
- Sonic sensors are in very good agreement
- Quarter-by-quarter audit consistency also demonstrates that the propeller-vane sensor performance is not degrading through 18 months of operation
- After tower shadow identification and flagging, substitution using data from multiple sensors can build model input dataset; i.e. selection based on wind quadrant

Thank you.....questions??

Kirk Stopenhagen Vorticity Consulting LLC kirk@vorticityair.com

Richard Berg Barr Engineering Company rberg@barr.com

